益生菌调节蛋鸡胆固醇代谢的研究进展Issuing time:2020-10-25 15:57 胆固醇是动物细胞膜的重要组成成分,是胆汁酸、维生素D3和类固醇激素的合成前体物质,具有重要的生理功能[1]。 体内胆固醇含量过低或过高对健康都是不利的,胆固醇过低会导致类固醇激素等物质合成不足,影响机体发育[2]; 胆固醇过高则会提高心血管疾病的发病率[3],鸡蛋含有人体所必需的蛋白质、脂肪、微量元素、维生素等,所含营养元素丰富而均衡,且易于被人体消化吸收,所以自古以来一直是人们所青睐的营养食品之一[4]。 然而,关于食用鸡蛋是否导致心血管疾病发病率提升仍存在争议。一些研究者认为食用鸡蛋会提高心血管疾病(冠心病、动脉壁粥样硬化等)的发生率[3,5-7],其危害几乎等于吸烟坏处的2/3[3]; 但另一种观点认为食用鸡蛋与心血管疾病的发生不存在相关关系,摄入鸡蛋对血清胆固醇的影响是微弱的[8-10],分歧存在的主要原因是蛋黄在人体内的具体代谢机制尚不清楚。 鸡蛋中胆固醇的含量约为213mg/枚,受到品种[11]、鸡龄[12-13]、产蛋率[14]以及饲粮成分[15-16]等多种因素的影响。 由于胆固醇是家禽胚胎发育的必需物质,降低鸡蛋中胆固醇含量将影响胚胎的发育,因此品种选育对调节蛋黄胆固醇的作用很小(<8%)[17],因此,动物营养研究人员尝试通过改变饲粮成分,如脂肪[16]、ω3脂肪酸[18]、微量元素[19] 含量和添加大蒜素[20-21]等调节蛋鸡胆固醇代谢。此外,益生菌作为一类活体微生物,具有多种生物活性,已有试验表明,调节机体胆固醇代谢是其活性之一。 1蛋鸡胆固醇代谢蛋鸡饲粮通常以植物性原料为主,很少含有动物性原料,因此,蛋鸡体内的胆固醇主要依靠自身合成。 蛋鸡体内的胆固醇主要在肝脏和卵巢中合成,其中肝脏不仅合成速度快,而且合成量多,是蛋鸡最活跃的胆固醇合成部位和血液胆固醇来源[22]。 产蛋鸡肝脏胆固醇合成代谢易受到饲粮成分,如脂肪、胆固醇、纤维含量的影响,而卵巢受饲粮影响相对较小[22-23]。Naber[22]推测1只体重约为1.7kg的产蛋鸡在饲喂无胆固醇饲粮的情况下,每天体内产生300mg的胆固醇,其中大约2/3沉积在鸡蛋中[24],其次为粪便和胆酸代谢[25],部分胆固醇用于合成类固醇激素、维生素D3以及细胞膜。 在公鸡和未性成熟母鸡体内,肝脏合成的胆固醇载脂蛋白主要为极低密度脂蛋白(VLDL)和高密度脂蛋白(HDL),VLDL到达血液后代谢成为低密度脂蛋白(LDL),因此血液中胆固醇主要以高密度脂蛋白胆固醇(HDLC)和低密度脂蛋白胆固醇(LDLC)的形式存在[26]。 母鸡性成熟以后,卵巢分泌的大量雌激素刺激肝细胞分泌VLDL小颗粒(现一般称作VLDLy,其直径小,甘油三酯和胆固醇含量高)[27]、卵黄蛋白原(VTG)[28]以及HDLC。 此时,血液中胆固醇主要通过载体蛋白VLDLy运输到卵巢,通过胞吞作用进入卵黄,随蛋黄排出体外。公鸡和未性成熟母鸡的VLDL的主要载体蛋白为载脂蛋白B(ApoB)和载脂蛋白(ApoC),能够激活脂蛋白酯酶(LPL)。 产蛋鸡VLDLy的主要组成载体蛋白是ApoBApoVLDLⅡ[29]。ApoVLDLⅡ的相对分子质量为18,是一个小分子载脂蛋白,能够抑制LPL的活性,防止VLDLy被LPL降解[29]。 同时,ApoVLDLⅡ可以控制VLDLy在形成过程中的大小,保证形成的VLDLy直径小于30nm,从而顺利通过卵细胞外的基底层[29-30]。 此外,Hummel等[31]研究发现ApoVLDLⅡ可能具有阻止VLDLy与LDL受体(LDLR)结合的作用。VLDLy和VTG经过血液运输到达卵巢后,与卵巢膜上的受体LR8结合,经胞吞作用进入卵细胞[32]。 另有研究表明,LDLR相关蛋白LRP380在胞吞过程中发挥了重要作用,其可能与LR8在卵母细胞的最后生长阶段具有协同作用[33]。 研究表明,蛋黄中95%的胆固醇来自VLDLy,5%来自VTG[34],且蛋黄中90%以上的胆固醇以游离形式存在[35]。 2益生菌可调节蛋鸡胆固醇代谢益生菌对机体能够产生有益的作用[36]。以往研究表明,微生物饲料添加剂具有维护动物肠道健康[37-39]、缓解不良应激[39]、改善畜舍环境[40-41]、调节机体脂肪代谢[42-44]、提高生产性能 和改善畜产品品质[45]等功能。 研究表明,益生菌在调节蛋鸡胆固醇代谢方面具有显著作用。 这些菌株主要有嗜酸乳杆菌、植物乳杆菌、瑞士乳杆菌、芽孢杆菌、屎肠球菌等[46]。 Mohan等[47]在饲粮中添加益生菌产品(Probiolac)饲喂28周龄白莱航鸡,试验10周,发现其血清和蛋黄胆固醇含量分别降低了27%和23%; Abdulrahim等[48]在饲粮中添加嗜酸乳杆菌饲喂20周龄白壳蛋鸡,试验8周,发现其血浆和蛋黄胆固醇含量分别下降了56%和17%; Chen等[49]在饲粮中添加益生菌产品(Ecozyme)饲喂27周龄白莱航蛋鸡,试验4周,发现益生菌组蛋鸡的血清和蛋黄胆固醇含量分别下降了13.67%和11.31%; Xu等[50]在饲粮中添加枯草芽孢杆菌饲喂25周龄罗曼褐壳蛋鸡,试验31周,发现蛋黄胆固醇含量下降了12.21%; Panda等[51]在饲粮中添加益生菌产品(乳杆菌、双歧杆菌等)饲喂24周龄白莱航蛋鸡,试验48周,发现益生菌组蛋鸡血清和蛋黄胆固醇含量分别下降了14%和19%; 随后,Panda等[52]在饲粮中添加芽孢乳杆菌饲喂25周龄白莱航鸡,试验16周,发现其血浆和蛋黄胆固醇含量分别下降了20.2%和27.6%; Kurtoglu等[53]在饲粮中添加益生菌产品(芽孢杆菌)饲喂27周龄褐壳蛋鸡,试验90d,发现试验30d时,其血清和蛋黄胆固醇含量无显著性差异,至90d时,其血清和蛋黄胆固醇含量分别下降了40.8%和37.2%; Haddadin等[54]在饲粮中添加嗜酸乳杆菌饲喂25周龄的白莱航蛋鸡,试验48周,前40周试验组饲喂试验饲粮,最后8周试验组饲喂基础饲粮,发现试验进行到40周时蛋鸡血浆和蛋黄胆固醇含量分别下降了55.0%和18.8%,但当试验进行到44周时血浆胆固醇含量下降了24.0%,蛋黄胆固醇含量与对照组差异不显著,至48周时,血浆和蛋黄胆固醇含量均无显著性变化; Mahdavi等[55]在饲粮中添加益生菌产品(枯草芽孢杆菌和地衣芽孢杆菌)饲喂28周龄白莱航鸡,试验12周,发现其血浆胆固醇含量下降了15.4%,但蛋黄胆固醇含量无显著性差异; Kalavathy等[56]在饲粮中添加乳酸菌饲喂20周龄罗曼褐壳蛋鸡,试验48周,发现24和28周龄时蛋黄胆固醇含量分别下降了15.3%和10.8%,但是32周龄时蛋黄胆固醇含量无显著性变化; Choe等[57]在饲粮中添加植物乳杆菌代谢物饲喂19周龄褐壳蛋鸡,试验12周,发现菌代谢物添加量为1.2%的组血浆和蛋黄胆固醇含量分别下降了32.7%和4.9%,而菌代谢物添加量为0.6%的组血浆和蛋黄胆固醇含量分别下降了18.1%和10.6%。 上述研究表明,蛋鸡饲粮中添加益生菌可以降低血清和蛋黄中胆固醇的含量,但降低程度有所差别。这可能与试验所用益生菌菌株、添加浓度、蛋鸡品种以及试验周期等因素有关。菌株本身存在极大的差异,尤其是分泌胆盐水解酶的能力存在差异导致对胆固醇的作用不同; 益生菌调节蛋鸡胆固醇代谢具有**剂量范围,剂量过低或过高对机体胆固醇代谢无显著影响;试验周期过长,蛋鸡可能利用自身对胆固醇的调节能力而使机体胆固醇恢复到正常水平。 另外,需要注意的是结果中胆固醇的表示方式,以上研究除了Mohan等[47]、Kurtoglu等[53]、Choe等[57]的研究外,其他研究结果均没有涉及蛋黄重量这一指标,蛋黄胆固醇是以浓度(mg/g蛋黄)的形式表示的,在这种情况下,试验结果难以准确评价益生菌对鸡蛋胆固醇的降低能力。 3益生菌调节胆固醇的可能机理关于益生菌降低胆固醇的机制,国内外学者进行了大量的研究,研究结果分述如下。 3.1益生菌可水解肠道内胆盐胆盐是以胆固醇为前体在肝脏中合成的水溶性物质,经过胆囊储存和浓缩,最终排入十二指肠内促进脂类物质的消化和吸收。胆汁一般由胆固醇、结合胆盐、磷脂、色素和电解质组成。胆盐水解酶(bilesalthydrolase,BSH)为N末端亲核水解酶,能特异性地水解结合胆盐的酰胺键,释放出游离胆盐和甘氨酸或牛磺酸的氨基酸残基[58]。 胆盐水解酶的主要作用部位在哺乳动物的小肠和大肠,更为确切的部位因动物的种类而异,如小鼠的主要代谢部位在小肠,而人的主要代谢部位在回肠,胆盐水解最终在大肠完成[59]。 研究表明,乳酸菌属、双歧杆菌属、肠球菌属、梭菌属和拟杆菌属等细菌均可分泌胆盐水解酶,具有水解结合胆盐的能力[58]。 每次肝肠循环中,大约有95%的结合胆盐在回肠被重新吸收。 游离胆盐与结合胆盐相比,其溶解度较低,不容易被肠道重新吸收从而随粪便排出体外[60],如图2[61]所示。 研究者推测,机体为了维持正常的肝肠循环,弥补胆盐损失,肝脏会利用血液中的胆固醇合成新的胆盐来补充排泄掉的那部分,从而引起血清胆固醇含量的降低[62-63]。 此外,体外试验表明,在pH低于5.5时,游离胆盐与胆固醇发生共沉淀现象,降低肠道内胆固醇的吸收几率[46]。但事实上,蛋鸡肠道内pH通常介于7.39~7.53[4],因此共沉淀在蛋鸡肠道内很难发生。但是,Ramasamy等[65]从鸡肠道内分离得到12株乳酸菌,经体外研究发现,12株乳酸菌都可以不同程度地分解甘氨酸胆盐(16.87%~100.00%)和牛磺酸胆盐(1.69%~57.43%),具有清除培养基中胆固醇的能力。 3.2益生菌可吸收或吸附肠道内的胆固醇益生菌除了通过胆盐水解酶的解离作用降低机体胆固醇外,还可以通过另外一些途径发挥相同的作用,这些途径包括: 1)益生菌细胞质同化胞外胆固醇; 2)益生菌细胞膜整合胞外胆固醇; 3)益生菌细胞壁吸附胞外胆固醇; 4)以上3种途径的结合方式[46]。 一般认为,益生菌细胞质同化和细胞膜整合胞外胆固醇的前提是益生菌必须为活菌。 Gilliland等[67]发现从猪粪便分离得到的嗜酸性乳杆菌RP32具有降低培养基中胆固醇的能力,以及抑制猪血清胆固醇含量的升高,进一步分离菌体细胞发现细胞内的胆固醇含量与对照组相比显著升高。 Noh等[68]发现生长中的嗜酸性乳杆菌ATCC43121吸收胆固醇后并没有将胆固醇降解,而是将完整的胆固醇整合到了细胞膜中。 Liong等[69]报道当培养基中添加胆固醇后,细胞膜的脂肪酸组成会发生变化,不饱和脂肪酸的含量上升,饱和脂肪酸的含量下降。 Lye等[70]利用荧光探针标记菌体磷脂双分子层,发现胆固醇在细胞膜有富集现象,进一步证明了益生菌可以通过细胞膜吸收胆固醇。 研究表明,益生菌能将肠道内胆固醇转化为肾固醇,而后者可随粪便排出体外[72]。 Chiang等[72]发现硝化细菌(Sterolibacteriumdenitrificans)可通过分泌胆固醇脱氢酶或异构酶,将胆固醇转化为肾固醇的前体物质胆固-4-烯-3-酮。 Lye等[73]发现嗜酸乳杆菌、保加利亚乳杆菌和干酪乳杆菌可以通过分泌胆固醇还原酶降低培养基中胆固醇的含量,提高培养基中肾固醇的浓度。 3.4益生菌可提高肠道内丙酸和丁酸含量益生菌代谢产物在肠道内通过发酵肠道内容物产生短链脂肪酸,如丙酸、丁酸等。丙酸可以抑制肝脏脂肪酸和胆固醇合成,降低甘油三酯和胆固醇的分泌速率,丁酸同样可以抑制肝脏胆固醇合成[74]。 4小结 综上所述,益生菌可以降低蛋鸡血清(血浆)和蛋黄中胆固醇的含量。研究人员提出了很多益生菌降胆固醇的可能机理,但是这些机理的主要依据来源于体外试验结果,而且缺乏体内的验证试验结果。由于益生菌在体内和体外的生长模式差异较大,所以只有将体内和体外试验相结合,才能清楚地了解益生菌调节胆固醇的真正机制,并以此指导益生菌在动物和人营养方面的进一步应用。 参考文献:[1] 汪仕奎,佟建明.蛋鸡的胆固醇代谢调控研究进展 [J].动物营养学报,2002,14(3):7-11. [2] 钱伯钦.胆固醇研究的进展[J].食品与健康,2000 (6):9. [3] SPENCEJD,JENKINDAS,DAVIGNONJ.Eggyolkconsumptionandcarotidplaque[J].Atherosclerosis,2012,224(2):469-473. [4] 徐桂云.鸡蛋品质及营养价值的新认识[J].中国家禽,2012,34(13):36-38. [5] APPLEBYPN,THOROGOODM,MANNJI,etal.Theoxfordvegetarianstudy:anoverview[J].TheAmericanJournalofClinicalNutrition,1999,70:525- 531. [6] NAKAMURAY,ISOH,KITAY,etal.Eggconsumption,serumtotalcholesterolconcentrationsandcoronaryheartdiseaseincidence:Japanpublichealthcenterbasedprospectivestudy[J].BritishJournalof Nutrition,2006,96:921-928. [7] TRICHOPOULOUA,PSALTOPOULOUT.Dietandphysicalactivityinrelationtooverallmortalityamongstadultdiabeticsinageneralpopulationcohort [J].JournalofInternalMedicine,2006,259:586- 591. [8] DAWBERTR,NICKERSONRJ,BRANDFN.Egg,serum,cholesterol,andcoronaryheartdisease[J].TheAmericanJournalofClinicalNutrition, 1982,36:617-625. [9] GRAMENZIA,GENTILEA,FASOLIM.Associationbetweencertainfoodsandrishofacutemyocardialinfarctioninwoman[J].BritishMedicalJournal, 1990,300:771-773. [10] GISELLAM,JOSEPHR,MICHAELP.DietarycholesterolfromeggsincreasesplasmaHDLcholesterolinoverweightmenconsumingacarbohydraterestricteddiet[J].TheJournalofNutrition,2008,138:272- 276. [11] BITMANJ,WOODDL.Cholesterolandcholesterylestersofeggsfromvariousavianspecies[J].Poultry Science,1980,59:2014-2023. [12] TURKDE,BARNETTBD.Cholesterolcontentofmarketeggs[J].PoultryScience,1971,50:1303- 1306. [13] VORLOVAL,SIEGLOVAE,KARPISKOVAR,etal.Cholesterolcontentineggsduringthelayingperiod [J].ActaVeterinariaBrno,2001,70:387-390. [14] JIANGZ,SIMJS.Eggcholesterolvaluesinrelationtotheageoflayinghensandtoeggandyolkweights [J].PoultryScience,1991,70:1838-1841. [15] COMBSGF,HELBACKANV.Studieswithlayinghens.1.Effectofdietaryfat,proteinlevelsandothervariablesinpracticalrations[J].PoultryScience, 1960,39:271-279. [16] SUMMERSJD,SLINGERSJ,ANDERSONWJ.Theeffectoffeedingvariousfatsandfatbyproductsonthefattyacidandcholesterolcompositionofeggs [J].BritishPoultryScience,1966,7:127-134. [17] WASHBURNKW,NIXDF.Geneticbasisofyolkcholesterolcontent[J].PoultryScience,1974,53: 109-115. [18] ELKINRG.Reducingshelleggcholesterolcontent.Ⅰ.Overview,geneticapproaches,andnutritionalstrategies[J].World’sPoultryScienceJournal,2006,62: 665-687. [19] BALEVIR,COSKUNB.Effectsofdietarycopperonproductionandeggcholesterolcontentinlayinghens [J].BritishPoultryScience,2004,45:530-534. [20] CHOWDHURYSR,CHOWDHURYSD,SMITHTK.Effectsofdietarygarliconcholesterolmetabolisminlayinghens[J].PoultryScience,2002,81:1856- 1862. [21] MOTTAGHITALABM,TARAZZ.Effectsofgarlicpowder(Alliumsativum)oneggyolkandbloodserumcholesterolinAryanbreedlayinghens[J].British PoultryScience,2002,43:S42-S43. [22] NABEREC.Nutrientanddrugeffectsoncholesterolmetabolisminthelayinghen[J].FederationProceedings,1983,42:2486-2493. [23] JOSEPHFW,EDWARDCN,RALPHMJ.Effectofdietaryfatandcholesterolontheinvitroincorporationofacetate14Cintohenliverandovarianlipids[J]. TheJournalofNutrition,1967,93:142-152. [24] U.S.DepartmentofAgriculture.Compositionoffoods,dairyandeggproducts;rawprocessedprepared[M].Washington,D.C.:AgriculturalResearchService,1989:137. [25] CHOBHS,HASSANAS,EGWIMPO,etal.Faecalsteroidexcretioninchickenswithhereditaryhyperlipidemia[J].ProceedingsoftheSocietyforExperimentalBiologyandMedicine,1987,186:84-89. [26] CHAPMANMJ.Animallipoproteins:chemistry,structure,andcomparativeaspects[J].JournalofLipidResearch,1980,21(7):789-853. [27] WALZEMRL.Lipoproteinsandthelayinghen:formfollowsfunction[J].PoultryandAvianBiologyReviews,1996,7(1):31-64. [28] SCHNEIDERJNJ.Receptormediatedlipoproteintransportinlayinghens[J].AmericanInstituteofNutrition,1991,121(9):1471-1474. [29] SCHNEIDERWJ,CARROLLR,SEVERSONDL,etal.ApolipoproteinVLDLⅡinhibitslipolysisoftriglyceriderichlipoproteinsinthelayinghen[J].JournalofLipidResearch,1990,31:507-513. [30] WALZEMRL,HANSENRJ,WILLIAMSDL,etal.OestrogeninductionofVLDLyassemblyinegglayinghens[J].TheJournalofNutrition,1999,129: 467S-472S. [31] HUMMELS,LYNNEG,OSANGERA,etal.MolecularcharacterizationofthefirstavianLDLreceptor:roleinsterolmetabolismofovarianfollicularcells [J].JournalofLipidResearch,2003,44:1633- 1642. [32] SCHNEIDERWJ,NIMPFJ.LDLreceptorrelativesatthecrossroadofendocytosisandsignalling[J].CellularandMolecularLifeSciences,2003,60:892- 903. [33] STIFANIS,BARBERDL,AEBERSOLDR,etal.Thelayinghenexpressestwodifferentlowdensitylipoproteinreceptorrelatedproteins[J].JournalofBiologicalChemistry,1991,266:19079-19087. [34] GRIFFINHD.Manipulationofeggyolkcholesterol:aphysiologist’sview[J].World’sPoultryScience Journal,1992,48:101-112. [35] KUKSISA.Yolklipids[J].BiochimicaBiophysica Acta,1992,1124:205-222. [36] JointFAO/WHOExpertConsultation.Healthandnutritionalpropertiesofprobioticsinfoodincludingpowdermilkwithlivelacticacidbacteria[R].Cordoba, Argentina,1-4October,2001. [37] AWADWA,GHAREEBK,ABDELRAHEEMS,etal.Effectsofdietaryinclusionofprobioticandsynbioticongrowthperformance,organweights,andintestinalhistomorphologyofbroilerchickens[J].Poultry Science,2009,88(1):49-56. [38] AWADWA,BOHMJ,RAZZAZIFAZELIE,etal.Effectofadditionofaprobioticmicroorganismtobroilerdietscontaminatedwithdeoxynivalenolonperformanceandhistologicalalterationsofintestinalvilliofbroilerchicken[J].PoultryScience,2006,85(6): 974-979. [39] DENDW,DONGXF,TONGJM,etal.TheprobioticBacilluslicheniformisamelioratesheatstressinducedimpairmentofeggproduction,gutmorphology,andintestinalmucosalimmunityinlayinghens[J]. PoultryScience,2011,91(3):575-582. [40] NAIDUAS,XIEX,LEUMERDA,etal.Reductionofsulfide,ammoniacompounds,andadhesionpropertiesofLactobacilluscaseistrainKE99invitro[J]. CurrentMicrobiology,2002,44(3):196-205. [41] CHANGMH,CHENTC.ReductionofbroilerhousemalodorbydirectfeedingofaLactobacillicontainingprobiotic[J].InternationalJournalofPoultryScience,2003,2(5):313-317. [42] FREDRIKB,DINGH,WANGT,etal.Thegutmicrobiotaasanenvironmentalfactorthatregulatesfatstorage[J].PNAS,2004,101(44):15718-15723. [43] 徐鹏,董晓芳,佟建明.微生物饲料添加剂的主要功能及其研究进展[J].动物营养学报,2012,24(8): 1397-1403. [44] 徐鹏.地衣芽孢杆菌TS01对蛋鸡脂肪肝出血综合征预防作用的研究[D].硕士学位论文.北京:中国农业科学院,2012. [45] SALMAU,MIAHAG,MAKIT,etal.EffectofdietaryRhodobactercapsulatusoncholesterolconcentrationandfattyacidcompositioninbroilermeat[J]. PoultryScience,2007,86(9):1920-1926. [46] 郭春锋,张兰威.益生菌降胆固醇功能研究进展 [J].微生物学报,2010,50(12):1590-1599. [47] MOHANB,KADIRVELR,BACCARATM,etal.Effectofprobioticsupplementationonserum/yolkcholesterolandoneggshellthicknessinlayers[J]. BritishPoultryScience,1995,36:799-803. [48] ABDULRAHIMSM,HADDADINMSY,HASHLAMOUNEAR,etal.TheinfluenceofLactobacillusacidophilusandBacitracinonlayerperformanceofchickensandcholesterolcontentofplasmaandeggyolk[J].BritishPoultryScience,1996,37:341- 346. [49] CHENYC,CHENTC.Reductionofshelleggandlayinghen’sbloodserumcholesterolbyprobioticorprebioticsupplementation[C/OL]//2003IFTannualmeetingtechnicalprogrambookofabstracts.Chicago:[s.n.],2003:14E35.http://ift.confex.com/direct/ift/2003/techprogram/paper_17864.htm. [50] XUCL,JIC,MAQ,etal.EffectsofadriedBacillussubtiliscultureoneggquality[J].PoultryScience, 2006,85:364-368. [51] PANDAAK,REDDYMR.Productionperformance,serum/yolkcholesterolandimmunecompetenceofwhiteleghornlayersasinfluencedbydietarysupplementationwithprobiotic[J].TropicalAnimalHealthandProduction,2003,35:85-94. [52] PANDAAK,RAOSSR,RAJUMVL,etal.Effectofprobiotic(Lactobacillussporogenes)feedingoneggproductionandquality,yolkcholesterolandhumoralimmuneresponseofWhiteLeghornlayerbreeders[J].JournaloftheScienceofFoodandAgriculture,2008,88:43-47. [53] KURTOGLUV.Effectofprobioticsupplementationonlayinghendietsonyieldperformanceandserumandeggyolkcholesterol[J].FoodAdditivesand Contaminants,2003,21:817-823. [54] HADDADINMSY,ABDULRAHIMSM,HASHLAMOUNEA,etal.TheeffectofLactobacillusacidophilusontheproductionandchemicalcompositionofhen’seggs[J].PoultryScience,1996,75: 491-494. [55] MAHDAVIAH,RAHMANIHR,POURREZAJ.Effectofprobioticsupplementsoneggqualityandlayinghen’sperformance[J].InternationalJournalof PoultryScience,2005,4(7):488-492. [56] KALAVATHYRA,NORHANIA,SYEDJ,etal.EffectsofLactobacillusculturesonperformanceoflayinghens,andtotalcholesterol,lipidandfattyacidcompositionofeggyolk[J].JournaloftheScienceof FoodandAgriculture,2009,89:482-486. [57] CHOEDW,LOHTC,FOOHL,etal.Eggproduction,faecalpHandmicrobialpopulation,smallintestinemorphology,andplasmaandyolkcholesterolinlayinghensgivenliquidmetabolitesproducedbyLactobacillusplantarumstrains[J].BritishPoultryScience,2012,53(1):106-115. [58] BEGLEYM,HILLC,GAHANCG.Bilesalthydrolaseactivityinprobiotics[J].AppliedandEnvironmentalMicrobiology,2006,72:1729-1738. [59] LYEHS,KUANCY,EWEJA,etal.Theimprovementofhypertensionbyprobiotics:effectsoncholesterol,diabetes,renin,andphytoestrogens[J].InternationalJournalofMolecularSciences,2009,10: 3755-3775. [60] BEGLEYM,CORMASGMG,HILLC.Theinteractionbetweenbacteriaandbile[J].FEMSMicrobiologyReviews,2005,29:625-651. [61] OOILG,LIONGMT.Cholesterolloweringeffectsofprobioticsandprebiotics:areviewofinvivoandinvitrofindingsinternational[J].JournalofMolecular Sciences,2010,11:2499-2522. [62] RODASBZD,GILLILANDSE,MAXWELLCV.HypocholesterolemicactionofLactobacillusacidophilusATCC43121andcalciuminswinewithhypercholesterolemiainducedbydiet[J].JournalofDairyScience,1996,79:2121-2128. [63] PEREIRADI,MCCARTNEYAL,GIBSONGR.AninvitrostudyoftheprobioticpotentialofabilesalthydrolyzingLactobacillusfermentumstrain,anddeterminationofitscholesterolloweringproperties[J].AppliedandEnvironmentalMicrobiology,2003, 69:4743-4752. [64] 欧阳五庆.动物生理学[M].北京:科学出版社, 2006. [65] RAMASAMYK,ABDULAHN,WONGMC,etal.BilesaltdeconjugationandcholesterolremovalfrommediabyLactobacillusstrainsusedasprobioticsinchickens[J].JournaloftheScienceofFoodandAgriculture,2010,90:65-69. [66] TAHRIK,CROCIANIJ,BALLONGUEJ,etal.Effectsofthreestrainsofbifidobacteriaoncholesterol [J].LettersinAppliedMicrobiology,1995,21:149- 151. [67] GILLILANDSE,NELSONCR,MAXWELLSC.AssimilationofcholesterolbyLactobacillusacidophilus[J].AppliedandEnvironmentalMicrobiology, 1985,49:377-381. [68] NOHDO,KIMSH,GILLILANDSE.IncorporationofcholesterolintothecellularmembraneofLactobacillusacidophilusATCC43121[J].JournalofDairy Science,1997,80:3107-3113. [69] LIONGMT,SHAHNP.Acidandbiletoleranceandthecholesterolremovalabilityofbifidobacteriastrains [J].BioscienceandMicroflora,2005,24:1-10. [70] LYEHS,RUSULG,LIONGMT.MechanismsofcholesterolremovalbyLactoballiunderconditionsthatmimicthehumangastrointestinaltract[J].InternationalDairyJournal,2010,20:169-175. [71] TOKE,ASLIMB.Cholesterolremovalbysomelacticacidbacteriathatcanbeusedasprobiotic[J].MicrobiologyandImmunology,2010,54:257-264. [72] CHIANGYR,ISMAILW,HEINTZD,etal.StudyofanoxicandoxiccholesterolmetabolismbySterolibacteriumdenitrificans[J].JournalofBacteriology, 2008,190:905-914. [73] LYEHS,RUSULG,LIONGMT.RemovalofcholesterolbyLactobacilliviaincorporationofandconversiontocoprostanol[J].JournalofDairyScience, 2010,93:1383-1392. [74] TRAUTWEINEA,RIECKHOFFD,ERBERSDOBLERHF.Dietaryinulinlowersplasmacholesterolandtriacylglycerolandaltersbiliarybileacidprofileinhamsters[J].TheJournalofNutrition,1998,128: 1937-1943. [75] WANGLJ,SONGBL.NiemannpickC1like1andcholesteroluptake[J].BiochimicaetBiophysicaActa,2012,1821:964-972. [76] ALTMANNSW,DAVISJRHR,ZHULJ,etal.NiemannpickC1like1proteiniscriticalforintestinalcholesterolabsorption[J].Science,2004,303:1201- 1204.
Prev维生素A抗氧化功能的机制
Next益生菌与动物肠道自由基的关系
|